The Bounds for Eigenvalues of Normalized Laplacian Matrices and Signless Laplacian Matrices
نویسندگان
چکیده
منابع مشابه
Bounds on normalized Laplacian eigenvalues of graphs
*Correspondence: [email protected] 1School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian, P.R. China 2Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian, P.R. China Full list of author information is available at the end of the article Abstract Let G be a simple connected graph of order n, where n≥ 2. Its normalized Laplacian eigenvalues are 0 = λ1 ...
متن کاملNordhaus-Gaddum Type Inequalities for Laplacian and Signless Laplacian Eigenvalues
Let G be a graph with n vertices. We denote the largest signless Laplacian eigenvalue of G by q1(G) and Laplacian eigenvalues of G by μ1(G) > · · · > μn−1(G) > μn(G) = 0. It is a conjecture on Laplacian spread of graphs that μ1(G)−μn−1(G) 6 n − 1 or equivalently μ1(G) + μ1(G) 6 2n − 1. We prove the conjecture for bipartite graphs. Also we show that for any bipartite graph G, μ1(G)μ1(G) 6 n(n − ...
متن کاملH-eigenvalues of Laplacian and Signless Laplacian Tensors
We propose a simple and natural definition for the Laplacian and the signless Laplacian tensors of a uniform hypergraph. We study their H-eigenvalues, i.e., H-eigenvalues with nonnegative H-eigenvectors, and H-eigenvalues, i.e., H-eigenvalues with positive H-eigenvectors. We show that each of the Laplacian tensor, the signless Laplacian tensor, and the adjacency tensor has at most one H-eigenva...
متن کاملEigenvalues of the normalized Laplacian
A graph can be associated with a matrix in several ways. For instance, by associating the vertices of the graph to the rows/columns and then using 1 to indicate an edge and 0 otherwise we get the adjacency matrix A. The combinatorial Laplacian matrix is defined by L = D − A where D is a diagonal matrix with diagonal entries the degrees and A is again the adjacency matrix. Both of these matrices...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Linear Algebra & Matrix Theory
سال: 2014
ISSN: 2165-333X,2165-3348
DOI: 10.4236/alamt.2014.44017